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1. Introduction

Both heterotic and Type I string compactifications show the salient features of the Standard

Model of particle physics as the emergence of gauge symmetry, the existence of three

generations of chiral matter or the existence of vector-like Higgs particles. In each class

one can construct concrete models which satisfy part of the constraints one imposes from

the low energy physics we know up to the energy scale of 102 GeV. However, all concrete

models studied so far fail at a certain step if more refined Standard Model features are

required.

There are both indications from particle physics and from string theory that super-

symmetry should play an important role for the physics beyond the Standard Model. For
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this reason, in all consistent string theory examples one first focuses on the construction of

supersymmetric string models and then breaks supersymmetry at low energies in a control-

lable way. While the E8×E8 heterotic string appears to be more natural for the embedding

of SU(5) and SO(10) GUT models, the Type I string (see [1] for a review) with intersecting

D-branes might be considered more natural for directly providing the Standard Model or a

Pati-Salam type gauge symmetry (see e.g. [2 – 4] for reviews). In particular the appearance

of U(1) gauge symmetries is almost inevitable in D-brane models. As long as we do not

know what the gauge group at the string scale really is, both approaches should be studied

to see how close these vacua can resemble the Standard Model.

Supersymmetric intersecting D-brane models have mostly been studied on toroidal

orbifolds [5 – 20]. Following the approach of [21], some of the basic properties of such

models are determined just by the topology of the underlying brane configurations. For

instance the chiral massless spectrum can be computed once one knows the topological

intersection form on H3(X, Z) with X denoting the orbifold space. The fixed loci of the

orbifold action can be appropriately taken care of by introducing twisted 3-cycles. In

addition one needs the action of the orientifold on the homological basis.

In a completely satisfactory model one has to implement a mechanism to freeze the

extra massless fields (moduli), which are ubiquitously present in all string compactifica-

tions. Here one is confronted with both closed and open string moduli, where the latter

parameterise the deformations of the D-branes in addition to possible continuous Wilson

lines along the D-brane. For unitary gauge group on the D-brane, these scalars transform

in the adjoint representation of the gauge group, so that, being light, they are contributing

to the one-loop beta function for the gauge couplings.1 The main insight into this problem

during the last years has been that turning on fluxes generates scalar potentials which can

freeze part or even all of the above moduli. However, one eventually has to decide whether

the mass scale of for instance the open string moduli is sufficiently large to not destroy

asymptotic freedom of SU(3)c.

From this perspective it is also interesting to have D-branes which do not have any

deformations in the first place. For space-time filling intersecting D6-branes this means

that they wrap so-called rigid 3-cycles in the internal manifold. These brane moduli are

counted by the number of closed one-cycles on the three cycle Γ the D6-brane is wrapping,

i.e. by the Betti number b1(Γ). In most orbifold examples studied so far such rigid 3-cycles

are absent. Consider for instance the mostly studied Z2 × Z2 orbifold. Type IIA D-brane

models on this orbifold with Hodge numbers (h2,1, h1,1) = (3, 51) have been first discussed

in [6 – 8]. Here there are only eight 3-cycles the D6-branes can wrap around leading to

only four Ramond-Ramond (R-R) tadpole constraints in addition to the same number

of torsion K-theory constraints [23]. Therefore, a lot of supersymmetric D-brane models

exist, whose statistical distributions have been discussed in [24]. However the D6-branes

do not wrap rigid 3-cycles so that one always gets massless adjoint matter in these cases.

On the contrary, it has been shown in [18, 19] that on the other Z2 × Z2 orbifold with

Hodge numbers (h2,1, h1,1) = (51, 3) there exist a large number of rigid 3-cycles. However,

1For a discussion of gauge coupling unification for intersecting D-brane models see [22].
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there is a certain price to pay, namely that some of the orientifold planes change sign and

that one gets 52 tadpole conditions, which makes it much harder to find semi-realistic

models [19, 25].

Sort of in the middle between these two extreme models are shift Z2 × Z2 orbifolds

with Hodge numbers (h2,1, h1,1) ∈ {(3, 3), (11, 11), (19, 19)}. Therefore, one might hope

to still get only a moderate number of tadpole conditions with the possibility of having

rigid cycles. The aim of this paper is to revisit these models from this perspective and

thereby systemise and generalise the earlier results [26 – 28, 13, 29]. The Z2 × Z2 orbifold

is one of the standard examples for orbifold compactification in string theory. The usual

realization of the group action is a combination of rotations by π of the internal coordinates.

However, this is not the most general choice because the rotations may be accompanied

by translations. The first type of such shifts would be z → z + δ which has already been

studied in [26 – 28, 13, 29, 30]. But there is a second type of shifts z → −z + κ which does

not change the topology of the orbifold but has implications at the level of the orientifold.

The third possibility for translations are shifts accompanying the orientifold projection

ΩR. In this paper we systematically analyse the consequences of the various shifts on the

geometry, in particular we show that they modify the presence of orientifold planes in the

various sectors independent of the orbifold topology.

This paper is organised as follows. In section 2 we analyse and classify the possible shift

Z2 ×Z2 orientifold geometries. In section 3, we work out the possible fractional D6-branes

and the formulas for the generic chiral massless spectrum. In addition, we derive the R-R

tadpole cancellation conditions including their explicit dependence on the various shifts.

Finally, in section 4 we present a Pati-Salam type model with no open string-moduli in the

visible sector for one of the shift orientifold backgrounds. Section 5 contains a summary

and outlook.

2. Classification of shift Z2 × Z2 orientifolds

In this section, the possible shift Z2 ×Z2 orbifold and orientifold geometries are character-

ized. To make the setup concrete, the 10-dimensional space-time is assumed as R
1,3 ×M6

and the 6-dimensional, compact, internal space M6 is chosen as the orientifold

M6 =
T

2 × T
2 × T

2

Z2 × Z2 + ΩR · Z2 × Z2
(2.1)

where the action of Z2 ×Z2 and R will be specified in the following. The underlying string

theory is type IIA.

2.1 Orbifold background

Let us consider first the factorizable six-torus T
6 = T

2 × T
2 × T

2. On each of the T
2

factors one can introduce complex coordinates zi where i = 1, 2, 3. Our choice of complex

structures is specified by identifying zi
∼= zi + n ex

i + m ey
i where n,m ∈ Z and the ea

i are

defined as

ex
i = 2π Rx

i + i βi 2π Ry
i and ey

i = i 2π Ry
i . (2.2)
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βi = 0 βi = 1
2

Figure 1: Choices of complex structures, fixed points and fundamental cycles on one T
2 factor.

In general, the basis {ex
i , ey

i } of the factorizable T
6 for the Z2×Z2 orbifold is arbitrary. But

later an anti-holomorphic involution R will be introduced which is compatible with (2.2)

only for βi = 0, 1/2. These definitions are illustrated in figure 1.

Next, consider the orbifold T
6/Z2 × Z2 where the six-torus is again factorizable. The

group Z2 × Z2 acts on the coordinates zi in each two-torus and since we are interested in

a group action involving shifts, we make the following general choice for the Z2 generators

Θ and Θ′

Θ :






z1 →−z1 +κ1

z2 →−z2 +κ2

z3 → z3+δ3

, Θ′ :






z1 → z1+δ1

z2 →−z2+δ2+κ2

z3 →−z3 +κ3

,

ΘΘ′ :






z1 →−z1+δ1+κ1

z2 → z2+δ2

z3 →−z3+δ3+κ3

.

(2.3)

The group element ΘΘ′ is included for completeness and the shifts are defined as δi =

δx
i ex

i + δy
i ey

i and κi = κx
i ex

i + κy
i ey

i . For consistency, one has to require that all group

elements square to the identity modulo the identifications on the torus. This implies that

the δi are restricted and in summary one finds

δa
i = 0, 1/2 and κa

i ∈ [0, 1) (2.4)

where a = x, y. It is important to realize that the δi determine different orbifold configura-

tions and that at the orbifold level all choices of κi lead to equivalent geometries. However,

as it will be shown in section 2.3, at the level of orientifolds also the κi determine different

configurations.

Depending on the shifts δi, the orbifold group (2.3) can have fixed points. It is easy to

see that for instance the action I z = −z + κ on one T
2 leaves the four points

1/2κ, 1/2κ + 1/2 ex,

1/2κ + 1/2 ey and 1/2κ + 1/2 (ex + ey)
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invariant. On the other hand, the action S z = z + δ with δ 6= 0 has no fixed points. For

the factorizable T
6 this implies that if δ3 = 0 then four points in T

2
1, four points in T

2
2 and

the whole T
2
3 are invariant under Θ. Therefore, in this case, Θ leaves 16 T

2 invariant. In

summary, one finds that

if δ3 = 0 then Θ leaves 16 T
2
3 invariant,

if δ1 = 0 then Θ′ leaves 16 T
2
1 invariant and

if δ2 = 0 then ΘΘ′ leaves 16 T
2
2 invariant.

In table 1 all combinations of the shifts δi and corresponding fixed points are listed. Since

at the orbifold level the κi lead to equivalent geometries, they have been set to zero. Also

for simplicity, shifts with δi 6= 0 are represented by the diagonal shift and only tori with

βi = 0 are shown. One can see that up to permutations of the T
2
i , there are four distinct

cases.

0 : There are no fixed points. This case will not be considered.

1 : There are fixed points from one twisted sector.2

2 : There are fixed points from two twisted sectors.2

3 : There are fixed points from all three twisted sectors and no shifts δi. For κi = 0,

this case was already analyzed from an intersecting brane perspective in [6 – 8] for

the case without discrete torsion, and in [19] for the case with discrete torsion.

2.2 Hodge numbers

The topology and therefore the number of homological cycles on the different shift Z2 ×Z2

orbifold configurations can be classified by the nontrivial Hodge numbers (h2,1, h1,1). The

contribution from the untwisted part is easily found as (h2,1, h1,1)untw = (3, 3) and the

resulting Hodge diamond is shown at the left in figure 2.

The contribution from the twisted part can be understood as follows. Consider for

instance the Θ sector with four fixed points in the first and four fixed points in the second

two-torus. These 16 singularities in T
2
1×T

2
2 can be resolved by a blow-up where one replaces

each of the fixed points by a complex projective 1-space P
1. In this limit one obtains K3×T

2
3.

However, since P
1 is isomorphic to the two-sphere S2, there are now 16 additional 2-cycles

and also 16 additional (1, 1)-forms. After taking thelimit K3 → T
2
1 × T

2
2/Z2 back to the

1
0 0

0 3 0
1 3 3 1

0 3 0
0 0

1

1
0 0

0 11 0
1 11 11 1

0 11 0
0 0

1

1
0 0

0 19 0
1 19 19 1

0 19 0
0 0

1

Figure 2: Hodge diamond for zero, one and two twisted sectors with fixed points.

2Note that case 1 includes the p23 model and case 2 includes the p3 model of [27, 13].
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Table 1: Possible fixed point configurations. A dot indicates fixed points in the Θ sector, a cross

in the Θ′ sector and a square in the ΘΘ′ sector.
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orbifold, one is left with 16 collapsed 2-cycles denoted by eΘ
ij and with 16 localized (1, 1)-

forms denoted by ωΘ
ij where i, j = 1 . . . 4 label the fixed points as in figure 1. But, because

of the action of Θ′, for δ1 6= 0 or δ2 6= 0 there are only eight collapsed (1, 1)-forms and

eight collapsed (2, 1)-forms which are invariant under the whole orbifold group Z2 × Z2.

The invariant (1, 1)- and (2, 1)-forms coming from the Θ sector are

ωΘ
ij + Θ′

(
ωΘ

ij

)
and

(
ωΘ

ij − Θ′
(
ωΘ

ij

))
∧ dz3 . (2.5)

From (2.5) one can conclude that, as long as the orbifold group (2.3) contains at least one

nontrivial shift δi, each twisted sector with fixed points contributes (h2,1, h1,1)tw = (8, 8) to

the Hodge numbers. The resulting Hodge diamonds for zero, one and two twisted sectors

with fixed points are displayed in figure 2.

In the following, the above mentioned case 1 of table 1 with fixed points in one twisted

sector will be labeled as (h2,1, h1,1) = (11, 11), and case 2 with fixed points in two twisted

sectors as (h2,1, h1,1) = (19, 19). Furthermore, the collapsed cycles eg
ij are actually excep-

tional cycles which will be considered again in section 3.1.

Note that for the Z2 × Z2 orbifold with trivial shifts δi = 0 the action of for instance

Θ′ on the Θ sector is just multiplication with the discrete torsion η = ±1. The resulting

Hodge numbers are then (h2,1, h1,1) = (3, 51) and (h2,1, h1,1) = (51, 3) for case of discrete

torsion η = +1 and η = −1, respectively.

2.3 Orientifold background

In this subsection, the shifts κi of the orbifold group (2.3) will become important because

their values determine the position of the fixed points and the orientifold projection ΩR

will move them. Therefore, the κi are no longer set to zero.

For type IIA string theory, the map R of the orientifold (2.1) is an anti-holomorphic in-

volution acting on the internal coordinates zi. In the context of geometric shift orientifolds,

the most general form of R we will use is the following

R :






z1 → z̄1 + λ1

z2 → z̄2 + λ2

z3 → z̄3 + λ3

(2.6)

where z̄ denotes the complex conjugate of z and the shifts λi are defined as λi = λx
i ex

i +λy
i ey

i

with λa
i ∈ [0, 1) and a = x, y. However, since the point group of R has to act crystallo-

graphically, i.e. lattice points are mapped to lattice points under complex conjugation, one

has to require

βi = 0, 1/2 . (2.7)

Moreover, for R to be an involution on the torus one has to ensure that

λx
i ∈

1

2
Z for βi = 0 ,

λx
i ∈ Z for βi =

1

2
.

(2.8)
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βi λx
i βi (δ

x
i + κx

i ) + (δy
i + κy

i ) − λy
i mod 1 1 → 2 → 3 → 4 →

0 0 0 1 2 3 4

0 0 1
2 2 1 4 3

0 1
2 0 3 4 1 2

0 1
2

1
2 4 3 2 1

1
2 0 0 1 2 4 3
1
2 0 1

2 2 1 3 4

Table 2: Permutation of I zi = −zi+δi +κi fixed points under R. The labels 1 . . . 4 are illustrated

in figure 1.

The closure of the orientifold algebra, i.e. (ΩR · Z2 × Z2)·(ΩR · Z2 × Z2) = Z2×Z2, implies

the following restrictions

βiδ
x
i + δy

i ∈
1

2
Z , (2.9)

βiκ
x
i + κy

i − λy
i ∈

1

2
Z , (2.10)

from which it follows that also fixed points are mapped to fixed points. The explicit

mapping of the fixed points under R is summarized in table 2.

The fixed loci of the orientifold projection ΩR are important non-dynamical objects

called orientifold planes. On T
6 = T

2 × T
2 × T

2, they can be described in terms of the

homological basis cycles [ai] and [bi] on T
2
i . These cycles are illustrated in figure 1 and

will be introduced more systematically in section 3.1. Furthermore, the signs ηΩR g = ±1

indicate the charge of the orientifold planes. We would like to refer the reader not familiar

with these concepts to sections 3.1 and 3.3. At this point, the important feature of the

expression for the orientifold planes (2.11) are the ∆ symbols.

Working out the fixed set of R g with g = 1,Θ,Θ′,ΘΘ′ one obtains the orientifold

planes in terms of bulk 3-cycles as follows

[ΠO6] = 2 ηΩR · [a1]⊗[a2]⊗[a3] · 1 ·∆1(λ1,0) ∆1(λ2,0) ∆1(λ3,0)

−2 ηΩRΘ · [b1]⊗[b2]⊗[a3] · 2−2β1−2β2 ·∆2(λ1,κ1) ∆2(λ2,κ2) ∆1(λ3,δ3)

−2 ηΩRΘ′ · [a1]⊗[b2]⊗[b3] · 2−2β2−2β3 ·∆1(λ1,δ1) ∆2(λ2,δ2+κ2)∆2(λ3,κ3)

−2 ηΩRΘΘ′ · [b1]⊗[a2]⊗[b3] · 2−2β1−2β3 ·∆2(λ1,δ1+κ1)∆1(λ2,δ2) ∆2(λ3,δ3+κ3)

(2.11)

where the symbols ∆1 and ∆2 are defined as

∆1(λi, δi) =

{
1 if λx

i + δx
i ∈ Z

0 otherwise
,

∆2(λi, δi + κi) =






1
if βi = 0 and −λy

i + δy
i + κy

i ∈ Z

or if βi = 1
2

0 otherwise

.

(2.12)
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Note that, depending on the complex structures βi and the various shifts δi, κi, λi, the

orientifold plane can receive contributions from zero, one two, three or four sectors. This

is in contrast to the usual Z2 × Z2 orientifold with always four contributions.

2.4 Summary

Let us summarize the considerations so far. The general action of the shift Z2×Z2 orbifold

group is displayed in equation (2.3) and the action of the orientifold projection is shown

in (2.6). In these expressions there appear three types of shifts called of type I, II and III

in the following. Their definitions and consistency conditions are

type I shifts : δi = δx
i ex

i + δy
i ey

i , δa
i = 0, 1

2 , βiδ
x
i + δy

i ∈ 1
2Z,

type II shifts : κi = κx
i ex

i + κy
i ey

i , κa
i ∈ [0, 1) , βiκ

x
i + κy

i − λy
i ∈

1
2Z,

type III shifts : λi = λx
i ex

i + λy
i ey

i , λa
i ∈ [0, 1) , λx

i ∈
(

1
2 + βi

)
Z.

The type I shifts determine the Hodge numbers of the orbifold and therefore the number

of homological cycles. For three, two and one non-trivial shifts δi one respectively finds

configurations with (h2,1, h1,1) = (3, 3), (11, 11) and (19, 19). In the case of all δi = 0, one

obtains Hodge numbers (h2,1, h1,1) = (3, 51) and (51, 3) depending on the discrete torsion η.

The type II and type III shifts become important at the level of the orientifold. Their

values determine the mapping of the fixed points as one can see from table 2. Moreover,

κi and λi also specify the fixed set under the orientifold projection ΩR, and therefore also

the orientifold planes. This in turn implies, that the type II and type III shifts strongly

influence the Ramond-Ramond tadpole cancellation condition.

In order to illustrate this point, let us consider topologies with Hodge numbers (3, 51)

or (51, 3) and the following combination of complex structures and shifts

β1 = 0, δ1 = 0, κ1 = 0, λ1 = 0,

β2 = 0, δ2 = 0, κ2 = 0, λ2 = 0,

β3 = 0, δ3 = 0, κx
3 = 0, κy

3 = 1
2 , λ3 = 0.

(2.13)

In contrast to the four sectors of the orientifold plane for the standard Z2 ×Z2 orientifold,

the resulting expression in this case has only two contributions

[ΠO6] = 2 ηΩR · [a1]⊗[a2]⊗[a3]

−2 ηΩRΘ · [b1]⊗[b2]⊗[a3] .
(2.14)

As a second example let us consider a configuration with Hodge numbers (3, 3) and shifts

and complex structures chosen as

β1 = 1
2 , δx

1 = 0, δy
1 = 1

2 , κ1 = 0, λ1 = 0,

β2 = 1
2 , δx

2 = 0, δy
2 = 1

2 , κ2 = 0, λ2 = 0,

β3 = 1
2 , δx

3 = 0, δy
3 = 1

2 , κ3 = 0, λ3 = 0.

(2.15)

Usually one would expect that there is only one sector contributing to the orientifold plane.

However, in this case there are all four sectors present which reads as

[ΠO6] = 2 ηΩR · [a1]⊗[a2]⊗[a3]

−1
2 ηΩRΘ · [b1]⊗[b2]⊗[a3]

−1
2 ηΩRΘ′ · [a1]⊗[b2]⊗[b3]

−1
2 ηΩRΘΘ′ · [b1]⊗[a2]⊗[b3] .

(2.16)
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3. Rigid branes on shift Z2 × Z2 orientifolds

In this section, the necessary techniques to analyze intersecting D-branes models on shift

Z2 × Z2 orientifolds are developed. The branes under consideration are supersymmetric

D6-branes filling out 4-dimensional space-time and three dimensions of the internal space.

In order to fix the open-string moduli, we are going to construct rigid cycles and

fractional branes as in [19]. Therefore, not all configurations of shift Z2 × Z2 orientifolds

will be of interest to us.

• The standard Z2 × Z2 orientifold without discrete torsion, i.e. with Hodge numbers

(h2,1, h1,1) = (3, 51), does not admit rigid 3-cycles. Therefore it will not be considered

in this work.

• The standard Z2 × Z2 orientifold with discrete torsion, i.e. with Hodge numbers

(h2,1, h1,1) = (51, 3) was analyzed in [19] for trivial type II and type III shifts κi =

λi = 0. These constructions can easily be generalized to the cases with κi 6= 0 and

λi 6= 0 and will therefore not be considered further in this work.

• The shift Z2 × Z2 orientifold with all δi 6= 0, i.e. with Hodge numbers (h2,1, h1,1) =

(3, 3), does not admit rigid cycles and therefore will not be considered.

• The shift Z2 ×Z2 orientifolds with Hodge numbers (h2,1, h1,1) = (11, 11) and (19, 19)

allow for rigid cycles and will be analyzed in detail in the following.

3.1 Homology

Bulk cycles

For the standard T
2
i there are two 1-cycles which wrap exactly once around the torus. Their

homology classes are denoted by [ai] and [bi] and the homological intersection numbers are

defined as [ai] ◦ [bj ] = −δij and all others vanishing. The two different complex structures

βi = 0 and βi = 1/2 can be combined in defining [a′i] = [ai] + βi [bi] which is illustrated in

figure 1.

The factorizable 3-cycles on T
2×T

2×T
2 are obtained as the direct product of 1-cycles

from each T
2 as follows

[ΠT 6

a ] =
3⊗

i=1

(
ni

a [a′
i
] + mi

a [bi]
)

=
3⊗

i=1

(
ni

a [ai] + m̃i
a [bi]

)
. (3.1)

Here ni
a and m̃i

a = mi
a + βi ni

a denote the wrapping numbers of the 1-cycles in each T
2

factor and the label T
6 indicates that these cycles are from the background torus.

As a next step let us consider the orbifold. For the factorizable 3-cycles this means

that one includes all the images of [ΠT 6

a ] under the orbifold group

[ΠB
a ] =

∑

g∈Z2×Z2

[g ΠT 6

a ] = 4 [ΠT 6

a ] . (3.2)

Then the orbifold identification will be such that one has to take into account appropriate

factors in the calculation of intersection numbers. The orbifold cycles coming from the
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p, q δi = 0 δi = 1/2 ex
i δi = 1/2 ey

i δi = 1/2 (ex
i + ey

i )

1 → 1 3 2 4

2 → 2 4 1 3

3 → 3 1 4 2

4 → 4 2 3 1

Table 3: Permutations of the fixed points in T
2
i under the orbifold group depending on the type

I shift δi.

ambient space are usually called bulk-cycles which is indicated by the superscript B. The

homological intersection numbers between different bulk-cycles is computed as

[ΠB
a ] ◦ [ΠB

b ] =
1

4
4 [ΠT 6

a ] ◦ 4 [ΠT 6

b ] = 4

3∏

i=1

(
ni

am̃
i
b − mi

añ
i
b

)
, (3.3)

where the factor 1/4 accounts for the identification of cycles and intersection points under

the orbifold group. For later convenience the intersection number on the i’th torus will

be denoted as Ii
ab = ni

am̃
i
b − m̃i

an
i
b. The intersection number on a factorizable T

6 then is

Iab = I1
ab · I

2
ab · I

3
ab.

Exceptional cycles

Let us now turn to the exceptional cycles coming from the collapsed P
1s. These 2-cycles

will be denoted as eg
ij where the i, j are in the range from 1 to 4 and label the fixed points

as in figure 1. The label g = Θ,Θ′,ΘΘ′ indicates the twisted sector and the intersection

number can be found as

[eg
ij ] ◦ [eh

uv ] = −2 δiu δjv δgh (3.4)

where the δ are Kronecker δ. However, the orbifold group will act on the exceptional 2-

cycles. The action of non-trivial h 6= g can be with (η = −1) or without (η = +1) discrete

torsion. Furthermore, h can also permute the fixed points as

g eh
ij = η eh

p(i)q(j) (3.5)

where g, h ∈ Z2 × Z2, g 6= h and g, h 6= 1. The order two permutations p and q depend

only on the shift δi (not on κi or λi) in the corresponding torus and their action is listed

in table 3.

The case with Hodge numbers (11, 11)

In the following, the configuration with fixed points only in the Θ twisted sector will be

chosen for the case with Hodge numbers (11, 11). The exceptional 2-cycles eΘ
ij can be

combined with a bulk 1-cycle from T
2
3 to obtain an exceptional 3-cycle. As an Z2 × Z2

invariant basis one finds

[αΘ
ij,n] =

(
[eΘ

ij ] − η [eΘ
p(i)q(j)]

)
⊗ [a3] ,

[αΘ
ij,m] =

(
[eΘ

ij ] − η [eΘ
p(i)q(j)]

)
⊗ [b3] ,

(3.6)
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where i, j denote the fixed points in the first and second torus, respectively. With this

basis one can then build more general exceptional 3-cycles as

[ΠΘ
a,ij ] = n3

a [αΘ
ij,n] + m̃3

a [αΘ
ij,m]. (3.7)

The intersection number between those cycles can be calculated using (3.4) and one obtains

[ΠΘ
a,ij ] ◦ [ΠΘ

b,st] = 2 I3
ab

(
δisδjt − η δp(i)sδq(j)t

)
(3.8)

where the identification under the remaining Z2 has also been taken into account.

The case with Hodge numbers (19, 19)

For the case with Hodge numbers (19, 19) the configuration with fixed points in the Θ and

Θ′ sector will be chosen in the following. As an invariant basis for the exceptional 3-cycles

one finds

[αΘ
ij,n] =

(
[eΘ

ij ] − η [eΘ
iq(j)]

)
⊗ [a3] ,

[αΘ
ij,m] =

(
[eΘ

ij ] − η [eΘ
iq(j)]

)
⊗ [b3] ,

[αΘ′

kl,n] =
(
[eΘ′

kl ] − η [eΘ′

q(k)l]
)
⊗ [a1] ,

[αΘ′

kl,m] =
(
[eΘ′

kl ] − η [eΘ′

q(k)l]
)
⊗ [b1] ,

(3.9)

where p and q are the permutations introduced in equation (3.5), i, j denote the fixed

points in the first and second T
2 for the Θ sector, and k, l denote the fixed points for the

second and third T
2 in the Θ′ sector. General exceptional 3-cycles can be constructed as

[ΠΘ
a,ij ] = n3

a [αΘ
ij,n] + m̃3

a [αΘ
ij,m] ,

[ΠΘ′

a,kl] = n1
a [αΘ′

kl,n] + m̃1
a [αΘ′

kl,m] ,
(3.10)

and the only non-vanishing intersection numbers of these cycles are

[ΠΘ
a,ij ] ◦ [ΠΘ

b,st] = 2 I3
ab δis

(
δjt − η δq(j)t

)
,

[ΠΘ′

a,kl] ◦ [ΠΘ′

b,uv] = 2 I1
ab δlv

(
δku − η δq(k)u

)
.

(3.11)

3.2 Fractional branes

After constructing the bulk and exceptional cycles on the orbifold, one can now combine

them to build fractional cycles. In order to fix the open-string moduli of a brane, it will

be interesting if complete rigid cycles appear.

Fixed points

From a geometrical point of view it is clear that the exceptional cycles eg
a,ij can be turned

on only if the bulk-brane runs through the corresponding fixed points. Therefore, in order

to obtain rigid cycles, we place the brane such that it runs through at least one of them.

However, since the branes of interest are supersymmetric and hence special Lagrangian,3

they are straight lines in each T
2 and this implies that they run through exactly two fixed
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(ni,mi) fixed points in T
2
i

(odd,odd) {1,4} or {2,3}

(odd,even) {1,3} or {2,4}

(even,odd) {1,2} or {3,4}

Table 4: Wrapping numbers and allowed fixed points for one T
2
i .

δi (ni,mi)

1/2 (ex
i + ey

i ) (odd,odd)

1/2 ex
i (odd,even)

1/2 ey
i (even,odd)

Table 5: Bulk-cycle wrapping numbers on T
2
i which lead to an invariant fixed point set (up to

permutations p(i1) = i2) for a given group action δi.

points. Depending on the bulk wrapping numbers (ni
a,m

i
a), only certain combinations of

fixed points are allowed. These are summarized in table 4.4

Let us now define a fixed point set Sg
a for brane a in the g twisted sector. The fixed

points coming from Θ will be labelled as {i1, i2} in T
2
1 and as {j1, j2} in T

2
2. For the Θ′

sector the labels k in T
2
2 and l in T

2
3 will be used

SΘ
a = {{i1, i2}, {j1, j2}} ,

SΘ′

a = {{k1, k2}, {l1, l2}} .
(3.12)

As mentioned previously, depending on the shift δi in a two-torus the orbifold group will

permute the fixed points of one sector. In particular, also the fixed point sets Sg
a are

changed. However, in certain cases this action just interchanges the fixed points in Sg
a as

p(i1) = i2 and p(i2) = i1 which means that the bulk-brane through such points is fixed

under the group action. The conditions for this interchange are summarized in table 5

and wrapping numbers leading to such a fixed point set will be labelled by a star (?)

in the following. Note that for non-star wrapping numbers {i1, i2} and {p(i1), p(i2)} are

complementary.

Charges

From a geometrical point of view, there are two possibilities for an exceptional 2-cycle to run

through the blown-up fixed point P
1. These two orientations will be denoted as εg

a,ij = ±1

where i, j label again the fixed points and g indicates the twisted sector. However, the εg
a,ij

3See part 2 of section 3.5 for a detailed explanation.
4Note that for the case of Hodge numbers (19, 19) there are further restrictions on the allowed fixed

points in T
2
2 depending on the wrapping numbers (n2

a, m2
a). However, these relations are needed only on a

technical level.
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Figure 3: On the left one can see a brane which runs through two fixed points in each T
2 factor

and on the right the direct product of the brane in T
2
1×T

2
2 is shown. The ϑ1,2 correspond to Wilson

lines along the brane.

can be changed as follows,

(n1
a, m̃

1
a) ⊗ (n2

a, m̃
2
a) ⊗ (n3

a, m̃
3
a) → (+n1

a,+m̃1
a) ⊗ (−n2

a,−m̃2
a) ⊗ (−n3

a,−m̃3
a)

⇒ εΘ
a,ij → −εΘ

a,ij

⇒ εΘ′

a,ij → +εΘ′

a,ij ,

(n1
a, m̃

1
a) ⊗ (n2

a, m̃
2
a) ⊗ (n3

a, m̃
3
a) → (−n1

a,−m̃1
a) ⊗ (−n2

a,−m̃2
a) ⊗ (+n3

a,+m̃3
a)

⇒ εΘ
a,ij → +εΘ

a,ij

⇒ εΘ′

a,ij → −εΘ′

a,ij .

(3.13)

Since the bulk-brane is invariant under such a change of wrapping numbers, one can use

this redundancy to fix signs as εΘ
a,i1j1

= +1 and εΘ′

a,k1l1
= +1.

This geometric picture also has a physical meaning. The orientations εg
a,ij can be

regarded as the charges of the Ramond-Ramond (R-R) fields localized at the Z2 ×Z2 fixed

points. These charges correspond to turning on discrete Wilson lines along the brane as it

was shown in [31] and as illustrated in figure 3. The resulting relations for the charges are

then

εΘ
a,i1j1

= +1, εΘ′

a,k1l1
= +1,

εΘ
a,i2j1

= +1 · eiϑ1 , εΘ′

a,k2l1
= +1 · eiϑ2 ,

εΘ
a,i1j2

= +1 · eiϑ2 , εΘ′

a,k1l2
= +1 · eiϑ3 ,

εΘ
a,i2j2

= +1 · eiϑ1eiϑ2 , εΘ′

a,k2l2
= +1 · eiϑ2eiϑ3 ,

where the above redundancy was used to fix εΘ
a,i1j1

and εΘ′

a,k1l1
as +1 and the ϑ1,2,3 = 0, π

are the possible Wilson lines along the brane in T
2
1, T

2
2 and T

2
3, respectively. With these

relations it is easy to see that the charges satisfy the following equation [31]

∑

i,j∈S
g
a

εg
a,ij = 0 mod 4 (3.14)

for each g. If this condition is not satisfied it would correspond to turning on a constant

magnetic flux on the D6-brane which is not considered in this work. The general result for

the charges εg
a,ij is shown in table 6.
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j1 j2

i1 +1 ι′

i2 ι ιι′

l1 l2

k1 +1 ι′′

k2 ι′ ι′ι′′

Table 6: Inequivalent choices for the signs εΘa,ij and εΘ
′

a,kl where ι, ι′, ι′′ = ±1.

The case with Hodge numbers (11, 11)

Let us now turn to the explicit construction of fractional branes. For the case with Hodge

numbers (11, 11) we make the following general ansatz

ΠF11
a =

1

NB
a

ΠB
a +

1

N
(1)
a

∑

i,j∈SΘ
a

εΘ
a,ijΠ

Θ
a,ij (3.15)

where the normalization constants NB
a and N

(1)
a can be determined from the number of

fractional branes needed to obtain a bulk-brane

NB
a = N (1)

a = 2 . (3.16)

However, there is a subtlety for the branes of type star (?), i.e. for those with i2 = p(i1)

and j2 = q(j1). The exceptional part of these branes is invariant under the orbifold group

only if the fixed point charges satisfy

ιaι
′
a = −η (3.17)

where η is the discrete torsion. Furthermore, for the group action on the open-string lattice

states to be well-defined, equation (3.17) has to be satisfied for all branes a in a specific

D-brane configuration.

In summary, the fractional branes in the case with Hodge numbers (11, 11) are the

following

ΠF11
a =

1

2
ΠB

a +
1

2

∑
{i,j}∈SΘ

a

εΘ
a,ijΠ

Θ
a,ij ,

ΠF11
? a =

1

2
ΠB

a +
(
ΠΘ

a,i1j1
+ ιaΠ

Θ
a,i2j1

)
,

(3.18)

where for the star (?) branes the exceptional part is worked out explicitly. Two examples

for these fractional branes in the case of Hodge numbers (11, 11) are presented in figure 4.

As expected, from (3.18) one can see that there are no complete rigid branes. The

reason is that there is one twisted sector with fixed points only in the first and second

T2. The bulk-brane in T2
3 is not fixed and therefore a chiral multiplet transforming in the

adjoint representation will appear in the spectrum.

The case with Hodge numbers (19, 19)

For the (19, 19) configuration we make a similar ansatz as above with two twisted sectors

ΠF19
a =

1

NB
a

ΠB
a +

1

N
(1)
a

∑

i,j∈SΘ
a

εΘ
a,ijΠ

Θ
a,ij +

1

N
(2)
a

∑

k,l∈SΘ′
a

εΘ′

a,klΠ
Θ′

a,kl . (3.19)
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Figure 4: Fractional branes for the case of Hodge numbers (11, 11). The type I shifts are δ =
1

2
(ex

1 + ey
2
) as indicated. The solid grey line is a fractional brane of type ΠF11

a and its bulk-brane

orbifold image is indicated as a dotted line. The black line is a fractional brane of type star (ΠF11

? b )

which is its own bulk-brane orbifold image.

Remember that only those exceptional cycles are turned where the bulk-brane runs through.

Then there are three cases: the Θ sector is turned on, the Θ′ sector is turned on or both

sectors are turned on. If a sector g is not present then the corresponding fixed point set

will be treated as Sg
a = ∅.

Again, there is a subtlety for the branes of type star (?), i.e. for those with fixed points

j2 = q(j1) in T
2
2. To have an exceptional part invariant under the orbifold group, one has

to require that

ι′a = −η (3.20)

where η is the discrete torsion. Moreover, for a well-defined action on the open-string

ground states, (3.20) has to be satisfied for all branes a in a specific D-brane configuration.

The normalization constants NB
a , N

(1)
a and N

(2)
a can be determined from the number

of fractional branes needed to obtain a bulk-brane. However, in contrast to the (11, 11)

case, this time there is a difference between the star (?) and non-star branes

NB
a = N (1,2)

a = 2 , NB
? a = N

(1,2)
? a = 4 . (3.21)

In summary, the fractional branes for the case with Hodge numbers (19, 19) are the following

ΠF19
Θ a =

1

2
ΠB

a +
1

2

∑
i,j∈SΘ

a

εΘ
a,ijΠ

Θ
a,ij ,

ΠF19
Θ′ a =

1

2
ΠB

a +
1

2

∑
k,l∈SΘ′

a

εΘ′

a,klΠ
Θ′

a,kl ,

ΠF19
? a =

1

4
ΠB

a +
1

2

(
ΠΘ

a,i1j1
+ ιaΠ

Θ
a,i2j1

)
+

1

2

(
ΠΘ′

a,k1l1
+ ι′′aΠ

Θ′

a,k1l2

)
,

(3.22)

where Θ labels a fractional brane with fixed points in the Θ sector, Θ′ labels the Θ′ sector

and a star (?) labels a fractional brane with fixed points in both sectors. Note that the

exceptional part in the last line is worked out explicitly and that two examples for fractional

branes can be found in figure 5.
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Figure 5: Example for the case of Hodge numbers (19, 19). The type I shift is δ = ex
2 + ey

2
as

indicated. A fractional brane of type ΠF19

Θ
is shown as a grey line and a fractional brane of type

star (ΠF19

? b ) is drawn as a black line.

One can see that the first two types of branes in (3.22) are not completely rigid and a

chiral multiplet transforming in the adjoint representation will arise. But the last type of

branes is completely rigid and therefore no open string moduli fields will appear.

However, for the case with Hodge numbers(19, 19) there exists an interesting linear

combination of fractional branes. Consider two branes of type star (?) with wrapping

numbers (n1,m1)⊗(n2,m2)⊗(n3,m3) and (−n1,−m1)⊗(n2,m2)⊗(−n3,−m3). In a linear

combination the fixed point charges cancel and therefore the exceptional part vanishes

ΠF19
? a ((n1,m1)⊗(n2,m2)⊗(n3,m3))

+ΠF19
? a ((−n1,−m1)⊗(n2,m2)⊗(−n3,−m3)) =

1

2
ΠB

a .
(3.23)

This half bulk-brane is no longer fixed in the second T
2 and an open-string moduli field

appears, but in the first and third two-torus the brane remains rigid.

Summary

At this point, it is worth to summarize the constructions of fractional branes so far. For

the case of Hodge numbers (11, 11) there are no complete rigid branes because there are

fixed points only in two T
2 factors. However, for the case of Hodge numbers (19, 19) the

branes of type star (?) are completely rigid.

A brane of type star (?) in the case of Hodge numbers (19, 19) has the property that

the fixed point sets SΘ = {{i1, i2}, {j1, j2}} and SΘ′
= {{k1, k2}, {l1, l2}} are invariant

under the action of the orbifold group up to permutations. That means that

q(j1) = j2 , q(k1) = k2 ,

q(j2) = j1 , q(k2) = k1 ,
(3.24)

where q denotes the permutation of fixed points displayed in table 4. From a geometrical

point of view, such a brane runs through fixed points of the Θ and Θ′ sector and its

bulk-brane is mapped to itself under the action of the orbifold group.

It is important to note that the branes of type star (?) in the (19, 19) case have different

normalization constants Na compared to the non-star branes. Furthermore, for the star (?)
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case there exists a linear combination of branes with no exceptional part while still being

partly rigid. These features provide interesting possibilities for model building.

3.3 Orientifold projection

Since the internal manifold M6 of this work is compact, one has to cancel the total Ramond-

Ramond (R-R) and Neveu Schwarz-Neveu Schwarz (NS-NS) charges of the D6-branes.

However, since we are interested in stable and therefore supersymmetric configurations

of branes, this can only be achieved by introducing objects with negative tension such

as orientifold 6-planes [ΠO6]. The orientifold planes are the fixed loci of the orientifold

projection ΩR(−1)FL where Ω is the world-sheet parity operator and R was defined in

section 2.3. The symbol FL denotes the left-moving fermion number and for convenience

the factor (−1)FL will be included in Ω in the following.

Since the internal manifold is an orbifold, there can be fixed loci not only of ΩR but

also of ΩRΘ, ΩRΘ′ and ΩRΘΘ′. Moreover, there are two different types of contributions

to the orientifold plane which will be labelled by ηΩRg = ±1. These signs are related to

the R-R and NS-NS charge of a brane in the following way

ηΩRg = +1 R-R charge < 0 and NS-NS charge < 0 ,

ηΩRg = −1 R-R charge > 0 and NS-NS charge > 0 .

The condition for cancellation of R-R charges (and therefore also for NS-NS charges)

translates into the R-R tadpole cancellation condition. The chiral part of it can be ex-

pressed in homology [32, 4] as

∑

a

Na

(
[Πa] + [Πa]

′
)

= 4 [ΠO6] (3.25)

where [Πa]
′ denotes the ΩR image of [Πa] and Na is the number of D6-branes wrapping

the cycle [Πa].

Let us now turn to the geometric action of ΩR on cycles. For the untwisted 1-cycles

one easily finds that

ΩR [a′
i
] = [a′

i
] − 2βi [bi] ,

ΩR [bi] = −[bi] .
(3.26)

For the bulk-cycle this implies that in ΩR [ΠB
a ] one simply has to change the wrapping

numbers from (ni
a, m̃

i
a) to (ni

a,−m̃i
a). Such an image of a bulk brane will be denoted

as ΩR [ΠB
a ] = [Π̂B

a ] in the following. For the exceptional 2-cycles one finds [19] that

Ω [eg
ij ] = −[eg

ij ]. However, also the additional signs ηΩRg and the permutation of the

fixed points under R have to be taken into account (see table 2). The final result for the

exceptional 3-cycles then is

ΩR [αg
ij,n] = −ηΩR ηΩRg [αg

R(i)R(j),n] ,

ΩR [αg
ij,m] = +ηΩR ηΩRg [αg

R(i)R(j),m] .
(3.27)
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Representation Multiplicity

¤
¤a

1
2

(
[Πa]

′ ◦ [Πa] + [ΠO6] ◦ [Πa]
)

¤¤a
1
2

(
[Πa]

′ ◦ [Πa] − [ΠO6] ◦ [Πa]
)

(¤̄a,¤b) [Πa] ◦ [Πb]

(¤a,¤b) [Πa]
′ ◦ [Πb]

Adja [Πa] ◦ [Πa]

Table 7: Chiral spectrum for intersecting D-branes.

With the help of (3.26) and (3.27) one can compute the orientifold images of the fractional

branes [ΠF
a ]′ = ΩR [ΠF

a ]. A hat (̂) will again indicate the replacement of m̃i
a by −m̃i

a and

in summary one obtains

[ΠF11
a ]′ =

1

2
[Π̂B

a ] − ηΩR ηΩRΘ
1

2

∑

i,j∈SΘ
a

εΘ
a,ij [Π̂

Θ
a,R(i)R(j)] , (3.28)

[ΠF19
a ]′ =

1

NB
a

[Π̂B
a ] − ηΩR ηΩRΘ

1

N
(1)
a

∑

i,j∈SΘ
a

εΘ
a,ij [Π̂

Θ
a,R(i)R(j)]

− ηΩR ηΩRΘ′
1

N
(2)
a

∑

k,l∈SΘ′
a

εΘ′

a,kl[Π̂
Θ′

a,R(k)R(l)] .
(3.29)

3.4 Spectrum and gauge groups

The chiral matter content of a given D-brane configuration can be computed in terms of

homological intersection numbers of the corresponding cycles in the internal space. For

branes not invariant under ΩR, one finds gauge groups of the form
∏

a U(Na) where Na

is the number of coincident branes a. The chiral fermions transform in bifundamental

(¤̄a,¤b), symmetric (¤¤a) or antisymmetric ( ¤
¤
a

) representations of the gauge group. Their

multiplicity is determined by the general rules [21] displayed in table 7. Note that, since

the self intersection of 3-cycles in a 6-dimensional space is zero, there is no chiral adjoint

matter. The explicit form of the needed intersection numbers in the setup of this work is

summarized in appendix A.

For cycles which are invariant under the orientifold projection ΩR one has to perform a

projection on the Chan-Paton degrees of freedom. This will lead to orthogonal or symplectic

gauge groups where the precise type has to be determined case by case from the underlying

Conformal Field Theory.

However, Z2 × Z2 orientifolds have already been studied in great detail from a CFT

point of view. In a type IIB formulation there is the following statement [33, 34, 1] where

g ∈ Z2 × Z2: If a Ωg invariant D5- or D9-brane wraps the two-torus T
2
i and there is a

non-vanishing constant B-field on T
2
i , then one can freely choose Sp(2N ) or SO(2N ) gauge

groups for such branes. By a T-dual transformation this result can be translated into the

type IIA formulation.
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If there is a two-torus T
2
i with βi = 1/2 and ΩRg invariant fractional branes

have wrapping numbers (ni, m̃i) = (±2, 0) on that T
2
i , then one can freely

choose Sp(2N ) or SO(2N ) gauge groups for such branes.

3.5 Consistency and supersymmetry conditions

Tadpole cancellation

The R-R tadpole cancellation condition (3.25) can be made more explicit for the fractional

branes constructed in section 3.2. It can be split into a bulk part and an exceptional part.

For the bulk part one finds

∑

a

Na

NB
a

n1
a n2

a n3
a = +4 ηΩR · 1 ·∆1(λ1,0) ∆1(λ2,0) ∆1(λ3,0) ,

∑

a

Na

NB
a

m̃1
a m̃2

a n3
a = −4 ηΩRΘ ·2−2β1−2β2 ·∆2(λ1,κ1) ∆2(λ2,κ2) ∆1(λ3,δ3) ,

∑

a

Na

NB
a

n1
a m̃2

a m̃3
a = −4 ηΩRΘ′ ·2−2β2−2β3 ·∆1(λ1,δ1) ∆2(λ2,δ2+κ2)∆2(λ3,κ3) ,

∑

a

Na

NB
a

m̃1
a n2

a m̃3
a = −4 ηΩRΘΘ′ ·2−2β1−2β3 ·∆2(λ1,δ1+κ1)∆1(λ2,δ2) ∆2(λ3,δ3+κ3) ,

(3.30)

where ∆1 and ∆2 had been defined in equation (2.12). Here one can see how the various

shifts can affect the R-R tadpole cancellation condition. For the exceptional part there is

no contribution from the orientifold planes and therefore one calculates

∑

a

Na

N
(Eg)
a

n
Ig
a

∑

{i,j}∈S
g
a

εg
a,ij

(
[αg

ij,n] − ηΩR ηΩRg [αg
R(i)R(j),n]

)
= 0 ,

∑

a

Na

N
(Eg)
a

m̃
Ig
a

∑

{i,j}∈S
g
a

εg
a,ij

(
[αg

ij,m] + ηΩR ηΩRg [αg
R(i)R(j),m]

)
= 0 ,

(3.31)

where g = Θ,Θ′, Eg = 1, 2 and Ig = 3, 1 for the Θ and Θ′ sector, respectively.

Supersymmetry conditions

Naturally, one is interested in stable configurations of D-branes which can be ensured if

one considers supersymmetric D-branes preserving the same supersymmetry. This implies

that the branes have to satisfy [35, 21, 4]

J |Πa = 0 and

∫

Πa

Im(eiφaΩ3) = 0 (3.32)

where φa is a phase, J is the Kähler-form and Ω is the holomorphic 3-form Ω3 = dz1 ∧

dz2 ∧ dz3. Manifolds with these properties are called Special Lagrangian and they are

volume minimizing in their homology class. Therefore in a flat space like T
2 ×T

2×T
2, the

bulk-branes are straight lines in each T
2 factor.

The phase φa indicates which supersymmetry is preserved. If there are several branes,

one needs them to preserve the same supersymmetry in order to have a stable configuration.
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This implies then that the φa have to be equal for all branes a and orientifold planes. And

since φO6 = 0 one finds φa = 0 for all a.

The explicit form of (3.32) for the branes in the setup of this work can be found as

the following

m̃1
am̃

2
am̃

3
a −

n1
an

2
am̃

3
a

U1U2
−

n1
am̃

2
an

3
a

U1U3
−

m̃1
an

2
an

3
a

U2U3
= 0 ,

n1
an

2
an

3
a − n1

am̃
2
am̃

3
aU

2U3 − m̃1
an

2
am̃

3
aU

1U3 − m̃1
am̃

2
an

3
aU

1U2 > 0 ,

(3.33)

where U i = Ri
y/R

i
x are complex structure moduli for T

2
i .

K-theory

In [36] it was shown that not all D-brane charges are classified by cohomology but rather

by K-theory. Therefore, one has to properly account for charges which may be invisible

to ordinary cohomology. In the type of models considered in this work, the additional

K-theory charges are usually Z2 valued and again need to be canceled. However, the

computation of K-theory groups for D-branes is very complicated. Instead one can use

the field theoretic argument that the cancellation of K-theory charges is equivalent to the

absence of global Sp(2N ) anomalies [37]. This translates into the requirement that the

number of D = 4 chiral fermions transforming in the fundamental representation of some

Sp(2N ) factors has to be even.

The global Sp(2n) anomalies can be detected by Sp(2) probe branes [38]. Such probe

branes Πprobe are branes which are invariant under the orientifold projection ΩR and lead

to an Sp(2) gauge group. The condition for a model to be free of global Sp(2n) anomalies

is then given by

[Πprobe] ◦
∑

a

Na[Π
F
a ] ∈ 2Z . (3.34)

The classification of possible probe branes for a given geometry is very complicated because

the invariance under ΩR strongly depends on the various shifts δi, κi, λi and on the

exceptional charges ι, ι′, ι′′. But equation (3.34) can be satisfied without knowing about

the probe branes if one chooses

Na ∈ 2 Z ∀a . (3.35)

Note that the K-theory constraints can also be derived by performing a stability anal-

ysis for D-branes as in [39]. However, for the models presented in this paper it is sufficient

to employ equation (3.35).

3.6 Anomalies and massive U(1)s

The anomalies of a given D-brane configuration can be computed in terms of group the-

oretical quantities which in turn can be expressed as intersection numbers of homological

cycles. The potential anomalies for intersecting D-branes are the following and with the
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help of the tadpole cancellation condition (3.25) they read as

cubic non-abelian ASU(Na)3 = 0 ,

mixed abelian AU(1)a−SU(Nb)2 = 1
2 Nb

(
−[ΠF

a ] + [ΠF
a ]′

)
◦ [ΠF

b ] ,

cubic abelian AU(1)a−U(1)2
b

= Na Nb

(
−[ΠF

a ] + [ΠF
a ]′

)
◦ [ΠF

b ] ,

mixed abelian-gravitational AU(1)a−G2 = 3Na [ΠO6] ◦ [ΠF
a ] .

(3.36)

In a consistent theory anomalies have to be canceled. And indeed, string theory

provides the Green-Schwarz mechanism [40] to cancel anomalies like (3.36). For the case

of intersecting branes a detailed explanation of the so-called generalized Green-Schwarz

mechanism can be found for instance in [32, 4].

However, there are two important consequences of the Green-Schwarz mechanism.

First, anomalous U(1) gauge fields will become massive and therefore do not contribute

to the chiral spectrum. Secondly, also anomaly free U(1) can become massive and do not

show up in the chiral spectrum. The massless U(1) are given by the kernel of the matrix [4]

Na ([Πa,I ] − [Πa,I ]
′) (3.37)

where the 3-cycles Πa have been expanded in an integral basis {eI}. Note that the massive

U(1) gauge fields do not contribute to the chiral spectrum, but survive as perturbative

global symmetries [41].

4. An example

In this section, the methods explained previously will be used to construct a simple example

of intersecting D6-branes on a shift Z2×Z2 orientifold. Although it is relatively easy to find

interesting models for the cases with Hodge numbers (11, 11) and (19, 19), we will choose

the (19, 19) configuration in order to get completely rigid branes and fix the open-string

moduli.

4.1 Background geometry and consistency conditions

In general, it is hard to obtain configurations with nice properties like the absence of

symmetric and antisymmetric representations in the spectrum. However, one can place D-

branes on top of or parallel to orientifold planes. Then the intersection numbers [Πa]◦[ΠO6]

and [Πa]
′ ◦ [Πa] will vanish trivially and no chiral symmetric or antisymmetric matter will

arise. Furthermore, there are no mixed abelian-gravitational anomalies as can be seen

from (3.36).

From the expression for [ΠO6] (2.11) one finds that there are at most four bulk-branes

which are parallel to the orientifold planes. The bulk wrapping numbers (ni, m̃i) of such

branes are the following

α : ( 22β1 · ε1
α , 0 ) ⊗ ( 22β2 · ε2

α , 0 ) ⊗ ( 22β3 · ε3
α , 0 ) ,

β : ( 0 , ε1
β ) ⊗ ( 0 , ε2

β ) ⊗ ( 22β3 · ε3
β , 0 ) ,

γ : ( 22β1 · ε1
γ , 0 ) ⊗ ( 0 , ε2

γ ) ⊗ ( 0 , ε3
γ ) ,

δ : ( 0 , ε1
δ ) ⊗ ( 22β2 · ε2

δ , 0 ) ⊗ ( 0 , ε3
δ ) ,

(4.1)
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where εj
ξ = ±1 with ξ = α, β, γ, δ. The constraints from supersymmetry (3.33) then restrict

the εj
ξ as

ε1
α · ε2

α · ε3
α = +1 , ε1

β · ε2
β · ε3

β = −1 ,

ε1
γ · ε2

γ · ε3
γ = −1 , ε1

δ · ε
2
δ · ε

3
δ = −1 .

(4.2)

Let us now choose a background geometry for our example. As it turns out, it is

relatively easy to obtain Pati-Salam like models for branes on top of or parallel to the

orientifold planes. Therefore we will focus on such configurations.

In order to get suitable ranks for the gauge group factors, we choose one complex

structure as β1 = 0 and the others as β2 = β3 = 1/2. The consistency condition (2.9) then

implies that the nontrivial type I shift has to be δ2 = 1
2 ey

2. The type II and type III shifts

are chosen all as κi = λi = 0 in order to get a simple mapping of the fixed points under

the orientifold projection R. With this background geometry the R-R tadpole cancellation

condition (3.30) simplifies as

∑

α

Nα

NB
α

= ηΩR ,
∑

β

Nβ

NB
β

= ηΩRΘ ,

∑

γ

Nγ

NB
γ

= ηΩRΘ′ ,
∑

δ

Nδ

NB
δ

= ηΩRΘΘ′ .
(4.3)

This in turn implies that all types of branes α, β, γ and δ have to be present and that the

charges of the orientifold planes have to be chosen as ηΩR g = +1. However, in this setup

the charges are not completely unrelated. It can be found for instance in [19] that they

have to fulfill the condition

η = ηΩR ηΩRΘ ηΩRΘ′ ηΩRΘΘ′ (4.4)

which implies that the discrete torsion has to be chosen as η = +1. This is however

not a strong restriction for the case of Hodge numbers (19, 19) because it fixes only the

Wilson line in T
2
2 as one can see from equation (3.20). In summary, the data to specify the

orientifold background for the present example is the following

β1 = 0, δ1 = 0, κ1 = 0, λ1 = 0,

β2 = 1/2, δ2 = 1/2 ey
2 , κ2 = 0, λ2 = 0,

β3 = 1/2, δ3 = 0, κ3 = 0, λ3 = 0,

ηΩR = +1, ηΩRΘ = +1, η = +1,

ηΩRΘ′ = +1, ηΩRΘΘ′ = +1.

(4.5)

4.2 Fractional branes

Since we want to fix the open-string moduli we are interested in rigid branes. This in turn

implies that the branes have to be of type star (?). And indeed, comparing the wrapping

numbers (n2,m2) = (n2, m̃2 − β2 n2) with table 5 shows that all branes in the present

background geometry are completely rigid.

It is easy to see that the bulk intersections of all branes α, β, γ and δ vanish and

therefore only the exceptional contributions have to be considered. However, the interesting
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ξ Nξ NB
ξ ( n1 , m̃1 ) ( n2 , m̃2 ) ( n3 , m̃3 ) {i1, i2}{j1, j2} {k1, k2}{l1, l2} ι ι′ ι′′

α 4 4 ( +1 , 0 ) ( +2 , 0 ) ( +2 , 0 ) {1, 3} {1, 2} {3, 4} {1, 2} τ0 −1 τ1

β 2 2 ( 0 , +1 ) ( 0 , +1 ) (−2 , 0 ) {1, 2} {1, 2} τ2 −1 τ3

γ 2 2 ( +1 , 0 ) ( 0 , +1 ) ( 0 ,−1 ) {1, 3} {1, 2} τ4 −1 τ5

δ1 1 4 ( 0 , +1 ) (−2 , 0 ) ( 0 , +1 ) {1, 2} {1, 2} {3, 4} {1, 2} τ6 −1 τ1

δ2 1 4 ( 0 ,−1 ) (−2 , 0 ) ( 0 ,−1 ) {1, 2} {1, 2} {3, 4} {1, 2} τ6 −1 τ1

δ3 1 2 ( 0 , +1 ) ( +2 , 0 ) ( 0 ,−1 ) {1, 2} {1, 2} τ7 −1 τ8

Table 8: Configuration of branes. The τi can be chosen independently as ±1.

feature of the (19, 19) shift orientifolds is that there are fractional branes which contribute

only 1/2 of a bulk-brane (3.23). Therefore we choose branes β and γ as half bulk-branes

which results in zero intersection numbers with all others and in the bulk-normalization

constant NB
β,γ = 2. For brane α and two branes of type δ we choose pure fractional branes

with exceptional sectors which implies NB
α,δ1,δ2

= 4. For one brane of type δ we choose the

half bulk-brane which gives NB
δ3

= 2.

Furthermore, one has to satisfy the consistency condition ι′ = −η (2.9) which implies

that ι′a = −1 for all branes a. These considerations together with a suitable choice of fixed

point sets is summarized in table 8. Note that the half bulk-branes are not fixed in the

second T
2 factor and therefore no fixed points are specified. Since these branes are not

completely rigid, not all open string moduli are fixed. This is however no severe problem

as we will see in the following.

In order to make the structure of the fractional branes more clear, we displayed the

branes also in the cycle picture. But one should keep in mind that this way of writing is

not complete because not all information about the fixed point sets can be read off.

[α] = + [a1]⊗[a2]⊗[a3] +
(
[αΘ

11,n] + τ0[α
Θ
31,n]

)
+1

2

(
[αΘ′

31,n] + τ1[α
Θ′

32,n]
)

[β] = − [b1]⊗[b2]⊗[a3]

[γ] = −1
2 [a1]⊗[b2]⊗[b3]

[δ1] = −1
2 [b1]⊗[a2]⊗[b3] +1

2

(
[αΘ

11,m] + τ6[α
Θ
21,m]

)
+1

2

(
[αΘ′

31,m] + τ1[α
Θ′

32,m]
)

[δ2] = −1
2 [b1]⊗[a2]⊗[b3] −1

2

(
[αΘ

11,m] + τ6[α
Θ
21,m]

)
−1

2

(
[αΘ′

31,m] + τ1[α
Θ′

32,m]
)

[δ3] = − [b1]⊗[a2]⊗[b3]

(4.6)

One can check that the configuration of branes in table 8 satisfies the R-R tadpole

cancellation condition (4.3) and (3.31) and the supersymmetry conditions (4.2). For the

K-theory constraints note that except for the δ branes there is always an even number of

branes N . For the last three branes one can see that δ1 + δ2 add up to half a bulk-brane in

a homological sense and have therefore zero intersections with the possible probe branes.

And since δ3 has no exceptional part, the same applies also to this brane. Therefore, all

consistency conditions for the configuration of branes in table 8 are fulfilled.
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branes U(4)α×Sp(2)δ1×Sp(2)δ2 × Sp(4)β×
Sp(4)
SO(4)γ

×Sp(2)δ3

αδ1 2 × ( 4̄, 2, 1, 1, 1, 1 )

α′δ1 2 × ( 4̄, 2, 1, 1, 1, 1 )

αδ2 2 × ( 4, 1, 2, 1, 1, 1 )

α′δ2 2 × ( 4, 1, 2, 1, 1, 1 )

Table 9: Chiral spectrum resulting from the branes of table 8.

4.3 Gauge groups and spectrum

To determine the type of gauge group one first has to check which branes are invariant

under the orientifold projection ΩR. As it turns out, only brane α is not invariant and

therefore leads to the gauge group U(4). The other branes are invariant under ΩR and

therefore their gauge group is SO(2N ) or Sp(2N ). From the explanation at the end of

section 3.4 it follows that for β and δ one can choose symplectic gauge groups because

the wrapping numbers satisfy (n3, m̃3) = (−2, 0) and (n2, m̃2) = (∓2, 0), respectively.

For brane γ the precise type of gauge group has to be determined from the underlying

Conformal Field Theory.

With the help of table 7 one can compute the chiral spectrum from the homological

intersection numbers between the various cycles. The result is displayed in table 9 where

it was used that the 2̄ representation of Sp(2) is isomorphic to the 2 representation. Fur-

thermore, from equation (3.36) one finds that the U(1) factor of brane α is anomalous.

Therefore it receives a mass by the Generalized Green-Schwarz mechanism and does not

contribute to the chiral spectrum.

From table 9 one can see that there are no chiral representations transforming under

the gauge factor Sp(4)β × Sp(4)
SO(4)γ

× Sp(2)δ3 . Therefore this part can be considered as to be

in the hidden sector. Moreover, since the unfixed open-string moduli of this example come

from the branes β, γ and δ3 they are not relevant. For the visible sector the total gauge

group is

SU(4)α × SU(2)δ1 × SU(2)δ2 (4.7)

where Sp(2) ∼= SU(2) has been employed. Since the branes δ are invariant under the

orientifold projection, the representations resulting from α ◦ δ1,2 and α′ ◦ δ1,2 are actually

the same. Therefore the chiral matter content of this example is

2 × (4, 2, 1)−1

2 × (4, 1, 2)+1

(4.8)

where the subindex indicates the U(1)α charge. Note that this is a two generation Pati-

Salam like model where all visible branes are completely rigid and no open-string moduli

fields appear for the visible sector.

5. Summary and outlook

In this paper we have presented a complete geometrical analysis of shift Z2×Z2 orientifolds

from an intersecting brane perspective. As it turned out, the type I shifts δ determine the
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topology of the orbifold and therefore the number of homological cycles and R-R tadpole

cancellation conditions. The type II and type III shifts κ and λ are responsible for the

permutation of fixed points under the orientifold projection ΩR and they strongly influence

the presence of the orientifold planes. In particular, depending on κ and λ it is possible to

have zero, one two, three or four sectors contributing to the orientifold plane. This in turn

implies, that the R-R tadpole cancellation condition can be modified by these shifts.

In the second part of this work we explicitly constructed fractional 3-cycles on the

orbifold and developed the necessary techniques to analyze intersecting D6-brane models.

Using these methods, in section 4 a simple but interesting model was presented. This

example is of type Pati-Salam with two generations and no open-string moduli (in the

visible sector). This is clearly not a realistic model, but since its construction is very

simple one might hope to find more realistic models in more general setups. Eventually one

would also like to turn on additional fluxes and search for realistic models in this extended

set-up [42 – 47]. However, since there is a huge number of different orientifold geometries

one might need to perform a computer search to look for interesting configurations or even

perform a landscape study like in [48, 24, 49].

Another direction of study would be to consider other orbifold groups like Z3. For

the corresponding orientifold one can show that non-trivial shifts will again modify the

presence of orientifold planes and hence the R-R tadpole cancellation condition.
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A. Summary of intersection numbers

To compute the chiral spectrum of table 7, one needs the intersection numbers between

fractional branes [ΠF
a ], their orientifold images [ΠF

a ]′ and the orientifold planes [ΠO6]. In

the following these combinations are summarized. For convenience, the notation Ii
ab =

ni
am̃

i
b − m̃i

an
i
b and Îi

ab = ni
am̃

i
b + m̃i

an
i
b and the definitions in (A.1) will be used

∆
(11)
1 = ∆1(λ1, 0) · ∆1(λ2, 0) · ∆1(λ3, 0) ,

∆
(11)
Θ = ∆2(λ1, κ1) · ∆2(λ2, κ2) · ∆1(λ3, 0) ,

∆
(11)
Θ′ = ∆1(λ1, δ1) · ∆2(λ2, δ2 + κ2) · ∆2(λ3κ3) ,

∆
(11)
ΘΘ′ = ∆2(λ1, δ1 + κ1) · ∆1(λ2, δ2) · ∆2(λ3, κ3) ,

∆
(19)
1 = ∆1(λ1, 0) · ∆1(λ2, 0) · ∆1(λ3, 0) ,

∆
(19)
Θ = ∆2(λ1, κ1) · ∆2(λ2, κ2) · ∆1(λ3, 0) ,

∆
(19)
Θ′ = ∆1(λ1, 0) · ∆2(λ2, δ2 + κ2) · ∆2(λ3κ3) ,

∆
(19)
ΘΘ′ = ∆2(λ1, κ1) · ∆1(λ2, δ2) · ∆2(λ3, κ3) .

(A.1)
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A.1 The case with Hodge numbers (11, 11)

[ΠF11
a ] ◦ [ΠF11

b ] =Iab +
1

2
I3
ab

∑

{i,j}∈SΘ
a

{s,t}∈SΘ
b

εΘ
a,ijε

Θ
b,st

(
δisδjt − η δip(s)δjq(t)

)
(A.2)

[ΠF11
a ]′ ◦ [ΠF11

b ] =Îab − ηΩR ηΩRΘ
1

2
Î3
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A.2 The case with Hodge numbers (19, 19)
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[5] R. Blumenhagen, L. Görlich and B. Körs, Supersymmetric 4d orientifolds of type-IIA with

D6-branes at angles, JHEP 01 (2000) 040 [hep-th/9912204].

[6] S. Förste, G. Honecker and R. Schreyer, Supersymmetric ZN × ZM orientifolds in 4d with

D-branes at angles, Nucl. Phys. B 593 (2001) 127 [hep-th/0008250].
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